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Artificial intelligence (AI) technology has huge scope in developing models to predict the survival rate of critically ill patients in
the intensive care unit (ICU). The availability of electronic clinical data has led to the widespread use of various machine learning
approaches in this field. Innovative algorithms play a crucial role in boosting the performance of models. This study uses a stacked
ensemble model to predict mortality in ICU by incorporating the clinical severity scoring results, in which several machine
learning algorithms are employed to compare the performance. The experimental results show that the stacked ensemble
model achieves good performance compared with the model without integrating the severity scoring results, which has the
area under curve (AUC) of 0.879 and 0.862, respectively. To improve the performance of prediction, two feature subsets are
obtained based on different feature selection techniques, labeled as SetS and SetT. Evaluation performances show that the SEM
based on the SetS achieves a higher AUC value (0.879 and 0.860). Finally, the SHapley Additive exPlanations (SHAP) analysis

is employed to interpret the correlation between the risk features and the outcome.

1. Introduction

With the progress of medical technology and the arrival of
aging society, the demand for critical care is increasing.
The intensive care unit (ICU) is a vital department, in which
patients with severe conditions will receive continuous, effi-
cient, and intensive care to improve their health conditions.
Generally, a critically ill patient requires special monitoring
equipment and the support of multiple medical staff. The
cost of patients in ICU is approximately 3.5 times that of
patients in regular care [1]. The regular operation of ICU
depends on the availability of adequate medical resources
[2, 3]. In addition, timely treatment of critical patients often
involves many factors, such as the accuracy of disease diag-
nosis, the efficiency of treatment, and the severity of the dis-
ease. However, the growth of medical resource supply and
medical investment is relatively limited with the increasing
number of patients. From the point of hospital management,
the above work mainly focuses on optimal allocation and
operational decision assistance with predictive modeling
[1]. In recent years, increasing attention has been devoted
to the improvement of efficiency in ICU. Fortunately, with
the widespread use of electronic health records and the rise

of intelligent technology, the effect of prediction has been
constantly updated.

Severity scoring system is a commonly used technique in
clinical practice, in which the scores are calculated based on
physiological assessment of patients. The Acute Physiology
and Chronic Health Evaluation (APACHE) proposed by
Knous [4] is a commonly used evaluation system that evalu-
ates critical patients in ICU based on severity scores. It has
proven to be an effective tool in measuring the severity
among critical patients. APACHE 2 is widely used in ICU
but has the problem of overestimating the mortality rate
[4, 5]. APACHE 4 system [6] was developed by using the
first 24 hours of information, in which the severity score is
calculated by summing of the acute physiology score, the
age score, and the numerical score. [7] used the APACHE
4 to model the prediction of mortality rate and give a com-
parison with other scoring results. There are also other con-
ventional evaluation approaches for scoring severity, such as
Sequential Organ Failure Assessment (SOFA), Glasgow
Coma Scale (GCS), and CT score [7].

Artificial intelligence technology has considerable scope
in developing models to predict the survival rate of critically
ill patients in the intensive care unit (ICU). The availability
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of electronic clinical data has led to the widespread use of
various machine learning approaches in this field. Fortu-
nately, the development of medical technology and the
abundance of electronic records on monitoring indicators
provide a reliable and rich source for the development of
new mortality prediction methods. Medical Information
Mart for Intensive Care 3 (MIMIC-3) is a freely available
database that includes healthy data records from over forty
thousand patients who stayed in the critical care units of
the Beth Israel Deaconess Medical Center (BIDMC) between
2001 and 2012 [8]. The rapid improvement of data mining
and machine learning methods has made significant
achievements in classification and prediction tasks. Recently,
intensive studies have been proposed based on the MIMIC-3
database. [9] proposed an explainable machine learning
algorithm for risk factor analysis of in-hospital mortality
based on the dataset with 2970 enrolled patients which are
selected from the MIMIC-3 database.

The combination of big data technology and clinical
severity scoring approaches plays a crucial role in improving
the quality of treatment [10, 11]. Accurate analysis of criti-
cally ill patients not only helps to improve treatment effi-
ciency and survival rate but also provides relevant
information for medical resource allocation and manage-
ment. Motivated by the existed techniques, a mortality pre-
diction model (SEM) is proposed by combining the clinical
severity scoring result with machine learning model using
stacked ensemble technique. The hierarchical framework of
stacked integration enables the existing severity scoring
results to be weighted with the results based on different
machine learning models. The detail algorithm procedure
is listed in Section 3.

The contributions of this study include the following:

(1) A series of preprocessing procedures executed on the
public clinical dataset

(2) In terms of feature selection, the subset features
(SetS) and the transformed feature set (SetT) are
developed

(3) Several weak learners (AL) based on APACHE sever-
ity scoring results are learned using the machine
learning methods

(4) A mortality prediction model combined with
APACHE severity score results is established by
using stack integration technique

(5) To interpret the correlation between features and the
outcome, the SHAP analysis is employed to give the
ranking of the importance features

The rest of this research is organized as follows: mate-
rials and methods are given in Section 3. Experiment pro-
cesses and results are given in Section 4. Conclusions and
some extended future work are listed in Section 5. All exper-
iments in our study are performed using R software on a sys-
tem with i5 Processor (8th generation), RAM of 8 GB, SSD
of 256 GB. The detail packages used in the experiments are
listed at the first paragraph in Section 4.
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2. Literature Review

In recent years, data-driven algorithms based on clinical big
data have achieved good performance in clinical prediction.
Logistic regression (LR) is a well-known linear model that
can handle classification tasks. However, the nonlinear
structure of the dataset often leads to poor performance in
practice [12, 13]. Approaches such as support vector
machine (SVM) [11], artificial neural networks (ANN),
and Naive Bayes (NB) are widely used in mortality predic-
tion [13]. Recently, tree-based algorithms such as decision
tree, random forest (RF), and extreme gradient boosting
(XGB) have achieved good classification evaluation in pre-
diction [1, 11, 14]. Deep learning is a complex machine
learning algorithm that has achieved remarkable achieve-
ments in the field of speech and image recognition. Typical
deep learning models include convolutional neural network
(CNN), deep belief networks (DBN), and long short term
memory network (LSTM [15]. The use of deep learning
techniques in healthcare has been limited due to the poor
explainability. Recently, [16] introduced a new occlusion-
based method to improve the explainability of RNN model
in predicting the mortality risk in ICU. In addition to the
above methods, it is a good choice to use integration tech-
nology to improve the prediction performance of model
[12]. Conventional integration techniques mainly include
bagging, boosting, and stacking. Random forest is one of
the familiar ensemble models, which is based on the bagging
ensemble. Different from the other two types of integration
models, stacking can aggregate several types of heteroge-
neous base learners into a metalearner.

Due to various problems brought by clinical data, mor-
tality prediction often faces significant challenges. To pro-
mote the development of clinical big data modeling,
various international big data competitions on the theme
of mortality prediction were held to boost the development
of new algorithms for predicting mortality rate in ICU [17,
18]. The topic of model performance caused by the dataset
itself has become an important research topic in the field
of information medicine. The main problems faced by com-
mon clinical big data are category imbalance, serious miss-
ing, and high dimensionality, which wusually bring
challenges to the improvement of modeling methods and
effects. The structure of class imbalance in clinical data often
intensively affects the performance of the model [19]. From
the data level to the algorithm level, several approaches were
proposed to deal with the problem of imbalance. [20]
accomplished the detection of rare cases by taking the quan-
tile function of the generalized extreme value distribution as
the link function in the framework of XGBoost. [21] pro-
posed a modified cost-sensitive principal component analy-
sis (MCSPCA) method for handling the problem of high-
dimension and unbalance existing in the ICU dataset.

Feature selection is critical for developing a model to
predict mortality in ICU. The risk of mortality in ICU varies
with disease and depends on the monitoring values of differ-
ent indicators. To determine the critical indicators based on
the given monitoring dataset is a crucial factor in determin-
ing the prediction performance of the model. Feature
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TaBLE 1: Example of related literature and technical comparison.

References Technique

Characteristics

Weight decay RF, integrate the missing value analysis and

[1] likelihood ratio test. Based on sparse data, robust calibration for large-scale dataset.
[7] APACHE 1V scoring system method Weak calibration for new data records.
[10] SOFA-based ML, (XGBoost, RF, SVM, and LR) Comparison with four dlfferept ML approaches, incorporating
the time information.
[12] LR and ensemble techniques. Poor performance for the nonlinear relationship
Improved accuracy and applicability;
[13] XGBoost promising performance for nonlinear relationship;
SHAP analysis for interpreting the model.
. Learn complex interactions from the data; reduced explainability
[16] Deep learning(rnn) for the model.
TaBLE 2: Examples of features in different types and the corresponding description of missing values.
Class Name Unit Missing percentage (%)
Age Years 4.6
i BMI kilograms/metres> 3.7
Demographics
PILD 1 0
d1_heartrate_max Beats per minute 3
. . dl_spoZ_max Percentage 0.4
Vital signs i
d1_temp_max Degrees Celsius 23.7
h1l_bun_min g/L 11.5
d1_albumin_min g/L 91.4
Laboratory features
d1_glucose_max mmol/L 57.4
gcs_motor_apache None 2.1
APACHE covariates heart_rate_apache None 1
Leukemia None 0.8
sodium_apache mmol/L 0.8
APACHE bidi Aid None 0.8
t
comorbIary diabetes_mellitus None 0.8
Immunosuppression None 0.8
o AHDP None 8.7
APACHE prediction
AIDP None 8.7

Abbreviation: PILD: pre_icu_los_days; AHDP: apache_4a_hospital_death_prob; AIDP: apache_4a_icu_death_prob.

selection based on correlation analysis [13] is one of the
commonly used methods in research. Based on machine
learning algorithms, such as random forest can give the
important ranking of features through the corresponding
evaluation index. The other conventional approach used to
handle feature selection in high dimensionality data is
dimensionality reduction, in which the original features are
converted to new features using linearly (or nonlinearly)
transformation methods. [22] proposed a new interactive
feature selection dimension reduction method, and com-
pared it with LASSO, subset selection by validating on the

given dataset. [23] developed a novel network-based dimen-
sionality reduction method and applied it to the actual
dataset.

The interpretability of model results plays a key role in
future prediction. However, in the field of artificial intelli-
gence, models are often complex or built using an integrated
approach, and it is not easy to evaluate the important fea-
tures that have a significant impact on the results. Explain-
able AI (XAI) [24] is a burgeoning field that aims to
explain how artificial intelligence systems work. The work
of AI system could be more reliable and explainable with
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F1GURE 1: The framework of stacked ensemble model. In Figure 1(a), five groups of predictions based on 5-fold cross validation are used as
the new training set. In Figure 1(b), logistic regression is used for modeling the new training set.

--

-

SEM

FI1GURE 2: The framework of features and approaches in the experiment. The blue rectangle icons represent feature sets, and the orange

ellipse icons represent approaches.

the progress of XAI techniques. As a commonly used XAI
technique, the SHapley Additive exPlanations (SHAP) anal-
ysis [25, 26] tries to interpret the prediction of the complex
model, in which the variable importance is measured by
the mean absolute Shapley value. Variables with positive
Shapley values can increase the probability of mortality.
The feature importance and partial dependence analysis
are obtained using the SHAP evaluator in Section 4. The
main characteristics of the related literatures are summa-
rized in Table 1.

In terms of the need for interpretability and the conve-
nience of using computational software, several machine
learning models are chosen as base and comparison models
in this study. The motivation and focus of this work mainly
come from the following points:

(1) In addition to promising accuracy, the ML-based
model has strong model interpretability

(2) Compared to the single technique (such as LR, RF,
and XGB), stacked ensemble techniques can improve
the prediction performance by weighting the various
results

(3) Similar to [10], the existing prediction model
enriched by incorporating the APACHE score-
based result

3. Materials and Methods

3.1. Data Description. The dataset used in this research is
obtained from the 2020 WiDS (Women in Data Science)
Challenge [18], which held to establish a model for the pre-
diction of mortality rate in ICU. The data consists of three
datasets, training data for 91713 encounters, unlabeled test
data for 39308 encounters, and the data table WiDS Data-
thon 2020 Dictionary. The purpose of this study is to vali-
date the proposed model, so all samples with labels are
employed in our study. The data table WiDS Datathon
2020 Dictionary gives supplemental information about the
data, including the name of features (e.g., identifier, demo-
graphic, and vitals), data types (e.g., numeric and binary),
description of each feature, and examples. Feature types con-
sist of identifiers, demographic, vitals, labs, labs blood gas,
and APACHE. The type of APACHE has a total of 40 fea-
tures, including APACHE covariates, APACHE comorbid-
ity, APACHE grouping, and APACHE prediction. The
value of features mainly includes continuous type and dis-
crete type.

Clinical data is often problematic for a variety of reasons.
Some feature records are missing due to monitoring device
faults. The extent to which patients participate in the moni-
toring process determines the validity of the monitoring
data. In summary, the characteristics of the data are summa-
rized as follows:
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TaBLE 3: Mortality rate at different age score risk levels.

Age segmentation <44 45-54  55-64  65-74 >75
Scores 0 2 3 5 6
Mortality rate 0.049 0.056  0.073  0.092 0.128

TaBLE 4: Feature selection results based on two approaches.

Feature sets Approaches Numbers
SetS Correlation filtering method 80
SetT PCA 54

TaBLE 5: Calculation formulas for evaluation indicators.

Indicators Formulas
o TP
Precision —_—
TP + FP
TP
Recall _
eca TP + EN
F 2TP
- r e
scores 2TP + FN + EN

(1) Class imbalance: the imbalance of class features is a
common problem in clinical data. The dataset is
severely imbalanced, which includes survival case
83798 compared to the opposite case 7915. Dealing
with class imbalance is an essential part of data pre-
processing because it leads to poor performance of
the model

(2) Missing data (MD): the second problem is the high
percentage of missing values. The number of cases
that have no missing value is 300, which means that
the missing problem exists for almost all cases. From
the point of feature, the number of complete features
is 32, and the value of the missing rate ranges from 0
to 0.92265. Table 2 gives the examples of feature
information and the description of missing percent-
age. The problem of missing value presents a great
challenge for modeling. Handling missing data is
an important part of data preprocessing, which
determines the performance of the model

(3) High dimension: there are 186 features in the origi-
nal dataset, including 8 category features and 178
numerical features. Critically ill patients in ICU are
likely to be monitored simultaneously with multiple
monitoring devices for better information. This leads
to the redundancy of electronic records. Another
problem with high dimensions is the collinearity
between features. For example, the value of dl_
heart_min indicates the lowest heart rate in the first
hour of unit stay, and hl_heart_min indicates the
lowest heart rate in the first 24 hours of unit stay,
which may have the same trend in the first 24 hours.
The problem of high dimension makes modeling

complicated and leads to feature interpretation
difficult

TABLE 6: Performance of several methods based on feature AHDP
and AIDP.

Feature set Model Precision Recall AUC  F-scores
ALR 0916 0.633 0.623 0.564
ANB 0.923 0.635 0.746 0.632
AHDP, AIDP
ARF 0.917 0.714  0.646 0.712
AXGB 0919 0.823  0.868 0.823

3.2. Data Preprocessing. From different perspectives, the
structure of the dataset is complex, which poses challenges
for modeling. In order to reduce the impact of various prob-
lems, some preprocessing work is needed to improve the
quality of the data. It is noted that there are several features
which have no contribution to the outcome, such as the fea-
tures hospital_id, patient_id, and encounter_id. It is found
that most continuous features do not have a normal approx-
imation. We choose to delete the outliers based on the con-
cept of quantile. The method used for handling outliers is
proposed using the idea of the interquartile range (IQR)
[13]. The detailed procedures are given as follows:

IQR=U; -U,,
Upper, = U; + 2 * IQR,
Lower, = U; — 2 * IQR,

1 Input, > Upper,orlnput, < Upper,
Input, = ,
0 else

(1)

where Input indicates input data, U, is the 75% quantile,
and U, is the 25% quantile. IQR represents the length of a
random interval defined by two quantiles. The value is iden-
tified as an outlier when the value of the input is equal to 1,
and the outliers are replaced by the median of the feature
corresponding.

MD is a common phenomenon in clinical data. The type
of MD includes missing at random, missing at random
completely, and not at random [27]. Missing value imputa-
tion brings great convenience for analyzing incomplete data.
There are two commonly used technologies in terms of
missing value imputation. One is using mean, median, or
regression model based on statistical techniques, and the
other is based on machine learning methods such as K-
nearest neighbor and neural networks. While approaches
based on machine learning perform better, they also tend
to require a higher computational cost. The dataset in our
research appears to be a high proportion of missing values,
with almost all cases being incomplete (only 303 of 91713
cases are completely observed). There are 95 features have
a missing percentage of at least 20%, and this means half
of the features that have a missing percentage of below
20%. The imputation work consists of two steps. First,
remove features that have the missing percentage exceeding
20%. There are two types of features in our dataset, contin-
uous data such as records of body temperature, and category
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: Input: Feature data X,,p, Y,

: Number of k-fold cross validation K
: Number of base learners M

: New training data X
: Output:Y
: Begin:

: Layer 1: Construct base learners

training

test

0NN U R W

9: Divide the X, p into training data X
10: for i in 1 to M do
11: for jin 1 to K do

12: YO = [yl v, YY)

14: end for
15: end for
16: Layer 2: Construct final learner

20: Test on the original test set X
21: Generate Y
22: return

test

test

: Use features AHDP and AIDP to train the APACHE learner AL.

training —

13: Generate the prediction based on the M base learners Y = [Y(l), Y(Z),-n,Y(M)]

17: Generate the new trainingX,, .,y = ¥ = [Y(!), Y?),...,y()]
18: Treat the results of AL as one of the Y
19: LR model is employed to learn the final model based on the new training set X

[%,15 X105 X135 Xp4» X;5) and test dataX,,,

training

ArcoriTHM 1: APACHE score-based model using stacked ensemble technique.

TaBLE 7: Performance of different methods based on two feature
sets.

Feature set Model  Precision Recall AUC  F-scores
LR 0914 0.633 0.632 0.564
NB 0.745 0.635 0.745 0.632
SetS RF 0.677 0.714 0.677 0.712
XGB 0.924 0.823 0.862 0.823
SEM 0.924 0.831 0.879 0.824
LR 0.623 0.654 0.648 0.634
NB 0.612 0.65 0.636 0.651
SetT RF 0.734 0.735 0.721 0.712
XGB 0.812 0.856 0.823 0.823
SEM 0.816 0.862 0.860 0.845

data such as whether the patient had an acute renal failure
during the first 24 hours of their unit stay. Generates multi-
variate imputations by chained equation (MICE) algorithm
implements multiple imputations using the fully conditional
specification, which can impute the mixture features of cat-
egorical and continuous. The function “mice” within the R
package MICE [27] is used to implement the multivariate
imputations for missing values, and the function “with”
was used to compare the complete data.

The imbalanced structure of the dataset makes mortality
prediction challenging. Handle problem of imbalance is a
primary step for classification. There are two commonly
used methods for handling the problem of imbalance. One
is based on the random oversampling (undersampling) tech-
nique by increasing (decreasing) the number of minority

samples to improve the effect of the algorithm [19]. The
other one is to improve the classification performance of
the algorithm itself. Recently, results in terms of class imbal-
ance are proposed by researchers, such as the algorithm
based on the clustering idea and a method combined with
tree-based models. Here, the oversampling method is used
to get a balanced dataset.

3.3. Feature Selection. High-dimensional data exists in vari-
ous fields, such as finance, biotechnology, and clinical
research. Conventional approaches reach their limited per-
formance due to the characteristic of high dimensionality.
This section deals with high-dimensional features from two
perspectives. One selects subset features using correlation
analysis, and the other maps high-dimensional features into
a lower space through linear transformation [22].

3.3.1. The Subset Selection Method. The subset selection
method is to retain the features with high correlation by per-
forming a series of feature filtering and correlation selection
on the original data. The detailed process is as follows: The
chi-square test [13] is widely used to assess the correlation
between two categorical variables. Defined the chi-square test
statistics

X2: Zn:(Ai;.Ti) ) (2)

i=1

The A, indicates the observed number, and the T'; indicates
the theoretical number. The high value of statistics means a
strong correlation between two features. The categorical fea-
tures within the subset are selected through the y* test. The
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(b) Performance of the SEM based on SetS and SetT

FIGURE 3: Model performance on test data. (a) Compared with three models, the proposed SEM is superior to others, which has the AUC of
0.879 and 95% CI (0.842,0.883). (b) The performance of SEM based on SetS achieves better prediction.

Pearson correlation coeflicient is a widely used indicator that
can describe the degree of linear correlation between two vari-
ables. The high value indicates the strong correlation between
two variables. The subset features are selected according to
some given threshold value based on the correlation matrix.

3.3.2. The Transformation Method. From the perspective of
dimensionality reduction, the method used for feature selec-
tion is the transformation technology which maps the high-
dimensional space to the low-dimensional space. The trans-
formation includes linear and nonlinear, both of which aim
to represent most of the information in the original feature
with fewer features and remove the noise information. Tech-
niques based on nonlinear transformations, such as t-
distribution random neighborhood embedding (T-SNE)
[22]. Principal component analysis (PCA) is a commonly
used unsupervised technique based on linear transforma-
tion, in which new features are generated.

The widely used statistical technique is still principal
component analysis (PCA), although improved versions
based on PCA have been proposed in recent years. Due to
the availability, conventional PCA techniques are used for
dimension reduction in the following research.

3.4. The Framework of SEM. Ensemble learning is a com-
monly used technology, which combines several base models
into an integrated model for the improvement of learning
efficiency. Commonly used ensemble techniques include
bagging, boosting, and stacking [28]. Random forest [11] is
a typical ensemble model based on bagging, in which the
final result is obtained by voting on the different results
obtained by the decision tree on random subsets of training
data. Unlike the bagging method, the stacked model inte-
grates several heterogeneous algorithms into a single model
using stacking technology, which focuses on the good ones

and discredits the bad ones [28]. Compared with other
ensemble techniques, the stacking method is more flexible
in handling different types of base models and accessible to
implement due to its hierarchical structure. Figure 1 shows
the framework of the stacked ensemble model. The stacking
integration process is mainly accomplished in two steps.
First, predictions on the training set are obtained using the
k-fold cross-validation for each base model to prevent over-
fitting. Taking the predictions generated by the first step as
the new training data to establish the second layer, logistic
regression is generally employed to get the final prediction.

The feature AHDP and AIDP represent two types of pre-
dicted probability for hospital and ICU deaths based on the
APACHE 3 score and other covariates. Fortunately, the sta-
tistical test shows that both of them have significant effect on
ICU mortality. It is essential to use the two features to
improve model prediction. A natural idea is to integrate an
ensemble model by using the corresponding probabilities
of these two features. To improve the interpretability of the
proposed SEM, LR, NB, RF, and XGB are employed to train
weak classifiers, denoted as ALR, ANB, ARF, and AXGB.
Finally, the proposed SEM model was constructed by inte-
grating the base learner LR, NB, RF, XGB, and AXGB. For
the future work, to improve the model performance, deep
learning techniques such as CNN could be considered as
the basic learner for building ensemble models. The frame-
work of APACHE-based model is given in Figure 2 and
the algorithms in detail are given as follows.

4. Empirical Studies

This section presents the experimental and analytical results
of the proposed model. Several R packages [29] are used to
execute the experiment. In terms of the data preprocessing,
caret and MICE [27] packages are used to achieve all
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(b) Feature importance measured by Shapley values based on features without AHDP and AIDP

FIGURE 4: The rank of feature importance based on the SHAP contribution values. Figure 4 shows the top 10 important features based on the
Shapely contribution values. The feature AHDP and AIDP have a strong relationship with the mortality rate.

experiments. LR is performed using the glmnet [30] package.
NB is performed using the klaR [31] package and the ran-
dom forest [11] package is used to execute the RF algorithm.
The packages XGBoost [32] and SHAPforxgboost [33] are
used to perform the XGB algorithm and SHAP analysis,
respectively. There is no existing package to handle the stack
algorithm. The framework in H20 [34] package is used to
model the proposed stacked algorithm. Finally, model evalu-
ation is performed using the package pROC [35].

4.1. Description Analysis. Clinical practice shows that age is
an essential clinical indicator in ICU intensive care. The
same diagnostic treatment programs or medical facilities
have different effects on different age groups. As can be seen
from Table 3, the mortality rate increases with age score.
There are two kinds of conventional approaches to deal
with high-dimensional features. One is feature selection,
which filters features with low relevance by retaining fea-
tures with high relevance. The other is the dimensionality
reduction technique, which replaces the original features

with lower dimensionality by transforming the feature struc-
ture. To enhance the model performance, two feature sets
are obtained based on the original feature sets, labeled as
SetS and SetT. The detail information in terms of feature
set are given in Table 4.

4.2. Model Evaluation. Two datasets are generated based on
the feature set SetS and SetT. The experiments are executed
on datasets, in which each dataset is divided into training
data and test data using 70/30 split, and 5-fold cross-
validation is performed on the training data. To evaluate
the model performance, several evaluation indexes are used,
such as F-score, AUC, recall, and confusion matrix [36]. The
confusion matrix is composed of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
The evaluation indicators based on the confusion matrix
are shown in Table 5.

In [7], APACHE 4, APACHE 4, and SAPS scores are
used to model mortality in emergency departments, and
the results show that APACHE 4 outperformed the other
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F1GURE 5: SHAP interaction analysis plots of the selected features. Abbreviation: ap3diag: apache_3j_diagnosis. (a) The interaction analysis
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two scoring systems in terms of classification. APACHE 4 is
employed to model mortality in ICU, and the results show
that the APACHE 4 outperformed other comparable
methods [7, 37]. The feature AHDP is a probabilistic predic-
tion of in-hospital mortality for the patient, which uses the
APACHE 1II score and other covariates. The feature AIDH
indicates the probabilistic prediction of ICU mortality for
the patient which utilizes the APACHE III score and other
covariates. Fortunately, both of these indicators are given
as predictive probabilities, which we can naturally assume
to be a type of classifier trained from the other features.

As shown in Table 6, AHDP and AIDP are used to estab-
lish the models, such as ALR, ANB, ARF, and AXGB. LR
achieves poor performance due to the parallel relationship
between the two features, which does not have a strong lin-
ear correlation. Compared with the conventional statistical
methods, machine learning algorithms perform better
because they can handle data with complex structures well,
among which the AXGB model gives an AUC value of
0.868. The results ensure the effectiveness of the proposed
integration model. The details in terms of the corresponding
results are given in the following table.

The ensemble model takes LR, NB, RF, XGB, and AXGB
as the base learner, in which AXGB is a weak learner based
on the features AHDP and AIDP. Here, we choose the
model AXGB as the AL in Algorithm 1 due to the model
AXGB achieves the best performance compared to other
models learned from AHDP and AIDP. The essence of the
proposed integration model SEM is a hierarchical model
with three layers. The crucial step is that the predicted values
based on the 5-fold cross-validation in the first layer are used
as the training data of the next layer model. It should be
noted here that to maintain the unity of the integration
model framework, for the base model AXGB, we directly
treat its prediction results as the 5-fold cross-validation
results obtained on the same original training set. LR, NB,
RF, XGB, and the proposed stacked ensemble model
(SEM) are used for modeling the prediction of mortality rate
based on the subset feature SetS and the transformed SetT,
respectively. The evaluation statistics precision, recall, F-
scores, and AUC were calculated to evaluate the perfor-
mance of each model.

Table 7 shows the performance of the proposed model
SEM on several evaluation indicators. In order to improve
the performance of prediction, the proposed ensemble
model is performed on two types of feature subsets, respec-
tively. The SEM model based on the SetS (AUC: 0.879) out-
performed model based on the SetT (AUC: 0.860).
Comparison results are given in Figure 3(b). In Figure 3(a),
under the three model building frameworks, the proposed
SEM achieves the highest AUC value of 0.879, outperform-
ing the model without integrating the APACHE results.
The above analysis results are only for the existing dataset.
The performances of the model are expected to improve
based on the emergence of continuously innovative
methods. Improvements in data preprocessing and
advanced methods of feature extraction are good ways to
improve prediction. In clinical practice, mortality is influ-
enced by more factors, and the results of the analysis based
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on this dataset have a particular referential value for under-
standing mortality in ICU.

4.3. Feature Importance Analysis. The importance of features
is characterized by their impact on response variables. Gen-
erally speaking, the greater the impact on the outcome fea-
ture, the more important the features are. In Figure 4, the
x-axis denotes the Shapley value, and the y-axis represents
the features that are sorted in decreasing order of impor-
tance. Each row in the figure represents a feature, and the
points in each row represent samples. The darker the color,
the higher the Shapley value of the feature. As shown in
Figure 4(a), AHDP and AIDP are the two most important
features for modeling mortality rates. In Figure 4(b), the
same analysis is performed using the features without
AHDP and AIDP. Age plays a crucial role in modeling
ICU mortality prediction. In the former analysis, it was
obtained that the features AHDP and AIDP has a strong
correlation with the mortality rate. Combined with SHAP
analysis, it is may be a good strategy to construct the classi-
fier based on the feature AHDP and AIDP. In Section 4.2,
the proposed model SEM and model evaluation have con-
firmed the feasibility of this strategy.

4.4. SHAP Dependency Analysis. SHAP importance analysis
explains which features contributed most to the mortality
rate. In practice, risk at the same age may continuously
change with other indicators. It is meaningful to determine
the “threshold” at which the risk to the patient suddenly
changes. SHAP dependency analysis is employed to explain
the relationship between the value of the feature and the cor-
responding Shapley value.

Figure 5 consists of 6 subfigures. In each subfigure, the x-
axis denotes feature values, the y-axis denotes the corre-
sponding Shapley values, and the color denotes the interac-
tive effect produced by the second feature. It can be seen
from Figure 5(a), that the correlation coefficient 0.9 means
that feature age had a strong relationship with its Shapley
value, which means the Shapley value increased with age.
The aged patients in the same conditions had a higher risk
of mortality. In Figure 5(c), Shapley value gets larger with
the value of feature d1_bun_min increase, after the peak
value d1_bun_min=30mmol/L, the Shapley values does
not increase. In Figure 5(d), for the feature gcs_motor_
apache, the Shapley contribution score decreases as the value
of gcs_motor_apache take. That is because the lower score
indicates the severity condition for patients. In summary,
for continuous features, the risk of mortality has signifi-
cantly changed in the following values: d1_bun_min>10-
mmol/L, dl_heartrate. min <75min, and dl_spo2_
min<90%. For the category features, ap3diag<480 and gcs_
motor_apache<4. Due to the complexity of disease control
and individual differences, the efficiency that patients receive
may vary from each other.

5. Conclusion and Discussion

With the development of science and technology, intelligent
diagnosis has attracted significant attention. Combining
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medical experience and scientific technology to improve the
efficiency of diagnosis will benefit both medical workers and
patients. The research proposes a novel stacked ensemble
model that attempts to combine the conventional clinical
severity scoring methods with machine learning techniques
to improve mortality prediction in ICU. The proposed
ensemble model SEM achieves good performance compared
to LR, NB, RF, and XGB. The performance on the selected
subset SetS gives an AUC of 0.879, while the transformed
subset SetT gives 0.860. Compared to the model without
integrating the APACHE 4 prediction results, the proposed
model gives a higher AUC. Furthermore, SHAP analysis is
employed to interpret the contribution of features and their
significance.

The performance and stability of the model are affected
by various factors, such as data preprocessing, feature selec-
tion, and model structure. In the future work, the model
could be constructed from the perspective of feature selec-
tion to explore the interpretation and interactivity between
features and outcomes. In terms of method, taking the exist-
ing severity scoring results as prior information, combined
with the machine learning algorithms to explore the mixture
method may be an alternative strategy. [10] proposed a
machine learning model based on the SOFA score for the
prediction of mortality in critically ill patients. [38] devel-
oped a two-step Bayesian approach to optimize clinical deci-
sions on timing, and the result shows that the proposed
model are clinically useful to improve the survival of
patients. The model of the research can be extended to other
severity scoring systems, such as SOFA, GCS, and CT. It is
expected that innovative combination strategies can be pro-
posed to boost the performance of the model.
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